Théorème (Sturm). Soit I un intervalle de \mathbb{R} et $q_1, q_2 : I \to \mathbb{R}$ deux fonctions continues telles que $q_1 \geq q_2$. Soit $\alpha < \beta$ deux zéros consécutifs d'une solution non nulle y_2 de $y'' + q_2y = 0$. Toute solution y_1 de $y'' + q_1y = 0$ s'annule sur $|\alpha; \beta|$ et sur $[\alpha; \beta[$.

Démonstration. Raisonnons par l'absurde en supposant que y_1 ne s'annule jamais sur $]\alpha;\beta]$ par exemple. Le théorème des valeurs intermédiaires assure que y_1 est alors de signe constant sur cet intervalle. Quitte à changer y_1 en $-y_1$, on va supposer que $y_1 > 0$ sur $]\alpha;\beta]$. Les zéros de y_2 étant isolés (sinon on pourrait montrer que y_2 est constante égale à 0), on a $]\alpha;\beta[\neq\varnothing$. On a aussi que y_2 ne s'annule pas sur $]\alpha;\beta[$, on peut supposer de même que $y_2 > 0$. Posons :

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$

On a $W'=y_1'y_2'+y_1y_2''-y_1'y_2'-y_1''y_2=y_1y_2(q_1-q_2)\geq 0$ sur $[\alpha;\beta]$. Donc W croît sur $[\alpha;\beta]$, et par hypothèse sur y_2 , on a $W(\alpha)=y_1(\alpha)y_2'(\alpha)\geq 0$ et $W(\beta)=y_1(\beta)y_2'(\beta)<0$, ce qui est absurde pour une fonction croissante. Dans le cas de $[\alpha;\beta[$, on aurait $W(\alpha)=y_1(\alpha)y_2'(\alpha)>0$ et $W(\beta)=y_1(\beta)y_2'(\beta)\leq 0$. On a donc que y_1 s'annule sur $]\alpha;\beta[$ et sur $[\alpha;\beta[$.

Application. étude des zéros d'une solution non nulle y de l'EDL $y'' + e^t y = 0$ sur $I = \mathbb{R}^+$.

Résultat 1. y admet une infinité de zéros que l'on peut ordonner de manière strictement croissante.

Démonstration. Soit $\alpha \in \mathbb{R}^+$. Sur $[\alpha; +\infty[$, on a $e^t \geq e^{\alpha}$ et $t \mapsto \sin e^{\alpha/2}(t-\alpha)$ une solution de $y'' + e^{\alpha}y = 0$ qui s'annule en α et en $\alpha + \pi e^{-\alpha/2}$. On en déduit, avec le théorème de Sturm, que y s'annule sur $[\alpha; \alpha + \pi e^{-\alpha/2}]$. En particulier, l'ensemble des zéros de y est infini. Comme de plus y a été supposée non nulle, l'ensemble des zéros est discret (pour les mêmes raisons que plus haut). Chaque compact de la forme [0;A] ne contient donc qu'un nombre fini de zéros, on peut donc les ranger en une suite strictement croissante $(t_n)_n$. Comme de plus cette suite ne peut pas être majorée, on a $t_n \xrightarrow[n \to +\infty]{} +\infty$.

Résultat 2. On a l'équivalent $t_n \sim 2 \ln n$ en $+\infty$.

Démonstration. En utilisant le résultat ci-dessus, on a $t_{n+1} \in]t_n; t_n + \pi e^{-t_n/2}]$, et donc $t_{n+1} \le t_n + \pi e^{-t_n/2}$. Recherchons à présent une minoration de t_{n+1} : soit $J = [t_n; t_{n+1}]$. $u: t \mapsto \sin e^{t_{n+1}/2}(t-t_n)$ est solution de $y'' + e^{t_{n+1}}y = 0$. Comme $e^t \le e^{t_{n+1}}$ sur J, on peut appliquer le théorème de Sturm pour avoir que u s'annule sur $]t_n; t_{n+1}]$. On a donc $t_n + \pi e^{-t_{n+1}/2} \le t_{n+1}$. Donc, pour tout $n \in \mathbb{N}$:

$$\pi e^{-t_{n+1}/2} \le t_{n+1} - t_n \le \pi e^{-t_n/2}$$

Comme $t_n \xrightarrow[n \to +\infty]{} +\infty$, on a $t_{n+1} - t_n \xrightarrow[n \to +\infty]{} 0$ par théorème des gendarmes, et donc $e^{-t_{n+1}/2} \sim e^{-t_n/2}$. Puis, toujours grâce à l'encadrement, on a $t_{n+1} - t_n \sim \pi e^{-t_n/2}$. Posons $u_n = e^{-t_n/2}$, on a alors :

$$2(\ln u_{n+1} - \ln u_n) \sim \frac{\pi}{u_n}$$

Comme $\frac{u_{n+1}}{u_n}\xrightarrow[n\to+\infty]{}1$ et $\ln x\sim_{x\to 1}x-1,$ on a :

$$\ln u_{n+1} - \ln u_n \sim \frac{u_{n+1} - u_n}{u_n}$$

Donc $u_{n+1} - u_n \sim \frac{\pi}{2}$ par transitivité de l'équivalence. Le théorème de Cesàro assure alors que $u_n \sim \frac{n\pi}{2}$. Donc $e^{t_n} = u_n^2 \sim \frac{n^2\pi^2}{4}$, et donc :

$$t_n = \ln e^{t_n} \sim \ln \frac{n^2 \pi^2}{4} \sim 2 \ln n$$